Search results for "john domain"
showing 8 items of 8 documents
Generalized John disks
2014
Abstract We establish the basic properties of the class of generalized simply connected John domains.
Accessible parts of boundary for simply connected domains
2018
For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…
Fractional Hardy-Sobolev type inequalities for half spaces and John domains
2018
As our main result we prove a variant of the fractional Hardy-Sobolev-Maz'ya inequality for half spaces. This result contains a complete answer to a recent open question by Musina and Nazarov. In the proof we apply a new version of the fractional Hardy-Sobolev inequality that we establish also for more general unbounded John domains than half spaces.
Korn inequality on irregular domains
2013
Abstract In this paper, we study the weighted Korn inequality on some irregular domains, e.g., s-John domains and domains satisfying quasihyperbolic boundary conditions. Examples regarding sharpness of the Korn inequality on these domains are presented. Moreover, we show that Korn inequalities imply certain Poincare inequality.
Bonnesenʼs inequality for John domains in Rn
2012
Abstract We prove sharp quantitative isoperimetric inequalities for John domains in R n . We show that the Bonnesen-style inequalities hold true in R n under the John domain assumption which rules out cusps. Our main tool is a proof of the isoperimetric inequality for symmetric domains which gives an explicit estimate for the isoperimetric deficit. We use the sharp quantitative inequalities proved in Fusco et al. (2008) [7] and Fuglede (1989) [4] to reduce our problem to symmetric domains.
Sharpness of uniform continuity of quasiconformal mappings onto s-John domains
2017
We construct examples to show the sharpness of uniform continuity of quasiconformal mappings onto $s$-John domains. Our examples also give a negative answer to a prediction in [7].
Sobolev homeomorphic extensions onto John domains
2020
Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the classical Jordan-Schoenflies theorem may admit no solution - it is possible to have a boundary homeomorphism which admits a continuous $W^{1,2}$-extension but not even a homeomorphic $W^{1,1}$-extension. We prove that if the target is assumed to be a John disk, then any boundary homeomorphism from the unit circle admits a Sobolev homeomorphic extension for all exponents $p<2$. John disks, being one sided quasidisks, are of fundamental importance in Geometric Function Theory.
Mappings of finite distortion : boundary extensions in uniform domains
2015
In this paper, we consider mappings on uniform domains with exponentially integrable distortion whose Jacobian determinants are integrable. We show that such mappings can be extended to the boundary and moreover these extensions are exponentially integrable with quantitative bounds. This extends previous results of Chang and Marshall on analytic functions, Poggi-Corradini and Rajala and Akkinen and Rajala on mappings of bounded and finite distortion.